Article Data

  • Views 263
  • Dowloads 51

Original Research

Open Access

Improved Interaction Models of Temporomandibular Joint Anatomic Relationships in Asymptomatic Subjects and Patientswith Disc Displacement with or without Reduction

  • Donald Seligman1,*,
  • Andrew G. Pullinger1

1Division of Oral Biology and Medicine, Section of Orofacial Pain, University of California at Los Angeles School of Dentistry, Los Angeles, California

DOI: 10.11607/jofph.18192 Vol.18,Issue 3,September 2004 pp.192-202

Published: 30 September 2004

*Corresponding Author(s): Donald Seligman E-mail: DonaldS261@aol.com

Abstract

Aims: To consider temporomandibular joint (TMJ) anatomic inter-actions in order to refine hard tissue models differentiating (1) joints diagnosed with disc displacement with reduction (DDwR) or without reduction (DDw/oR) from asymptomatic joints (Normals), and (2) DDwR joints from DDw/oR joints. Methods:TMJ tomograms of 84 women with unilateral DDwR and 78 with unilateral DDw/oR were compared against each other and against those of 42 female Normal joints through the use of 14 linear and angular measurements, 8 ratios, and 34 interactions. A classification tree model for each comparison was tested for fit with sensitivity, specificity, accuracy, and log likelihood and com-pared to logistic regression models. Results: In the classification tree model comparison, the DDwR model versus the Normal model realized 35.9% log likelihood (88.0% sensitivity, 66.7%specificity); the DDw/oR model versus the Normal model realized 38.8% log likelihood (69.6% sensitivity, 85.7% specificity). The DDwR model versus the DDw/oR model realized 33.3% log like-lihood (76.0% sensitivity, 73.1% specificity). In the logistic regres-sion model comparison, the DDwR model versus the Normal model realized 40.8% log likelihood (82.1% sensitivity, 78.6%specificity) and the DDw/oR model versus the Normal model real-ized 61.1% log likelihood (85.9% sensitivity, 90.5% specificity). The DDwR model versus the DDw/oR model realized 21.5% log likelihood (60.3% sensitivity, 79.8% specificity). The addition of interactions to the logistic regression models improved the previ-ously published log likelihood from 99% to 149%. Conclusion: The interactions improved logistic regression models and the data suggest that anatomic characteristics influence joint functional sta-tus. Because the models incorporated nearly all considered anatomic measurements, no anatomic factor is redundant in the closed TMJ biological system.

Keywords

disc displacement with reduction; disc displacement without reduction; multifactorial analysis; temporo-mandibular joint anatomy

Cite and Share

Donald Seligman,Andrew G. Pullinger. Improved Interaction Models of Temporomandibular Joint Anatomic Relationships in Asymptomatic Subjects and Patientswith Disc Displacement with or without Reduction. Journal of Oral & Facial Pain and Headache. 2004. 18(3);192-202.

References

1. Lundh H, Westesson P-L, Kopp S. A three-year follow-up of patients with reciprocal temporomandibular joint clicking. Oral Surg Oral Med Oral Pathol 1987;63:530–533.

2. Pullinger AG, Seligman DA, John M, Harkins S. Multifactorial comparison of disk displacement with and without reduction to normals according to temporo-mandibular joint hard tissue anatomic relationships. J Prosthet Dent 2002;87:298–310.

3. Pullinger AG, Seligman DA. Multifactorial analysis of differences in temporomandibular joint hard tissue anatomic relationships between disk displacement with and without reduction in women. J Prosthet Dent 2001;86:407–419.

4. Wabeke KB, Spruijt RJ, Habets LLMH. Spatial and morphologic aspects of temporomandibular joints with sounds. J Oral Rehabil 1995;22:21–27.

5. Farrar WB, McCarty WL. Inferior joint space arthrography and characteristics of condylar paths in internal derangements of the TMJ. J Prosthet Dent 1979;41:548–555.

6. Hansson TL. Pathological aspects of arthritides and derangements. In: Sarnat BG, Laskin DM (eds). The Temporomandibular Joint: A Biological Basis for Clinical Practice, ed 4. Philadelphia: Saunders, 1992:165–182.

7. Ogus HD. The mandibular joint: Internal rearrangement. Br J Oral Maxillofac Surg 1987;25:218–226.

8. Meunnissier M, Meunier A, Carpentier P. Disc movement over the condyle head. Radiographical study on autopsy material. J Oral Rehabil 1993;20:501–515.

9. Nickel JC, McLachlin KR. An analysis of surface congruity in the growing human temporomandibular joint. Arch Oral Biol 1994;39:315–321.

10. Pullinger AG. Natural history and pathologic progression of internal derangement with persistent closed lock. In: Sanders B, Murakami K-I, Clark GT (eds). Diagnostic and Surgical Arthroscopy of the Temporomandibular Joint. Philadelphia: Saunders, 1989:159–189.

11. Henderson B, Edwards JCW. Synovial lining in health and disease. London: Chapman and Hall, 1987:41–47.

12. Burgess J. Symptom characteristics in TMD patients reporting blunt trauma and/or whiplash injury. J Craniomandib Disord 1991;5:251–257.

13. Pullinger AG, Solberg WK, Hollender L, Petersson A. Relationship of mandibular condylar position to dental occlusion factors in an asymptomatic population. Am J Orthod Dentofacial Orthop 1987;91:200–206.

14. Alexander SR, Moore RN, DuBois LM. Mandibular condyle position: Comparison of articular mountings and magnetic resonance imaging. Am J Orthod Dentofacial Orthop 1993;104:230–239.

15. Katzberg RW, Keith DA, Ten Eick WR, Guralnick WC. Internal derangements of the TMJ: An assessment of condylar position with centric occlusion. J Prosthet Dent 1983;49:250–254.

16. Ronquillo HI, Guay J, Tallents RH, Katzberg R, Murphy W, Proskin H. Comparison of condyle-fossa relationships with unsuccessful protrusive splint therapy. J Craniomandib Disord 1988;2:178–180.

17. Brand JW, Whitney JG, Anderson ON. Condyle position as a predictor of temporomandibular joint internal derangement. Oral Surg Oral Med Oral Pathol 1989;67: 469–476.

18. Sutton DI, Sadowsky L, Bernreuter WK, McCutcheon MJ, Lakshminarayan AV. Temporomandibular joint sounds and condyle/disk relation on magnetic resonance images. Am J Orthod Dentofac Orthop 1992;101:70–78.

19. Pullinger AG, Solberg WK, Hollender L. Tomographic analysis of mandibular condyle position in diagnostic subgroups of temporomandibular disorders. J Prosthet Dent 1986;55:723–729.

20. Årtun J, Hollender LG, Truelove EL. Relationship between orthodontic treatment, condylar position, and internal derangement in the temporomandibular joint. Am J Orthod Dentofac Orthop 1992;101:48–53.

21. Rey R, Barghi N, Baily JO Jr. Incidence of radiographic condylar concentricity in non-patients [abstract 881]. J Dent Res 1981;60(suppl A).

22. Owen AH. Orthodontic/orthopedic treatment of craniomandibular pain dysfunction. Part 2: Posterior condyle displacement. J Craniomandib Pract 1984;2:334–349.

23. Pullinger AG, Hollander L, Solberg WK, Petersson A. A tomographic study of mandibular condyle position in an asymptomatic population. J Prosthet Dent 1985;53: 706–713.

24. Karpac JR, Pandis N, Williams B. Comparison of four different methods of evaluating on axially corrected tomograms of the condyle/fossa relationship. J Prosthet Dent 1992;67:532–536.

25. Sato S, Goto S, Kwamura H, Motegi K. The natural course of nonreducing disc displacement of the TMJ: Relationship of clinical findings at initial visit to outcome after 12 months without treatment. J Orofac Pain 1997;11:315–320.

26. Pullinger AG, Bibb CA, Ding X, Baldioceda F. Relationship of articular soft tissue contour and shape to the underlying eminence and slope profile in young adult temporomandibular joints. Oral Surg Oral Med Oral Pathol 1993;76:647–654.

27. Kerstens HCJ, Tuinzing DB, Golding RP, Van der Kwast WAM. Inclination of the temporomandibular joint eminence and anterior disc displacement. Int J Oral Maxillofac Surg 1989;18:229–232.

28. Pullinger AG, Seligman DA, John M, Harkins S. Multifactorial modeling of temporomandibular anatomic and orthopedic relationships in normal female versus undifferentiated disk displacement joints. J Prosthet Dent 2002;87:289–297.

29. Pullinger AG, Seligman DA. Quantification and validation of predictive values of occlusal variables in TMD using a multifactorial analysis. J Prosthet Dent 2000;83:66–75.

30. Pullinger AG, Seligman DA. The degree to which attrition characterizes diagnostic groups of temporomandibular disorders. J Orofac Pain 1993;7:196–208.

31. Pullinger AG, Seligman DA, Gornbein JA. A multiple regression analysis of the risk and relative odds of temporomandibular disorders as a function of common occlusal factors. J Dent Res 1993;72:968–979.

32. Seligman DA, Pullinger AG. A multiple stepwise logistic regression analysis of trauma history and 16 other history and dental cofactors in females with temporomandibular disorders. J Orofac Pain 1996;10:351–361.

33. Dworkin SF, LeResche L. Research diagnostic criteria for temporomandibular disorders: Review, criteria, examinations and specifications, critique. J Craniomandib Disord 1992;6:301–355.

34. Yatani H, Sonoyama W, Kuboki T, Matsuka Y, Orsini MG, Yamashita A. The validity of clinical examination for diagnosing anterior disk displacement without reduction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998;85:654–660.

35. Kircos LT, Ortendahl DA, Mark AS, Arakawa M. Magnetic resonance imaging of the TMJ disc in asymptomatic volunteers. J Oral Maxillofac Surg 1987;45:852–854.

36. American Academy of Orofacial Pain. Okeson JP (ed). Orofacial Pain: Guidelines for Assessment, Diagnosis, and Management. Chicago: Quintessence, 1996:33.

37. Watt-Smith S, Sadler A, Baddeley H. Comparison of arthrotomographic and magnetic imaging of 50 temporo-mandibular joints with operative findings. Br J Oral Maxillofac Surg 1993;31:139–143.

38. Tennenbaum HC, Freeman GBV, Psutka DJ, Baker GI. Temporomandibular disorders: Disc displacements. J Orofac Pain 1999;13:285–290.

39. Hellsing G, Holmlund A. Development of anterior disc displacement in the temporomandibular joint: An autopsy study. J Prosthet Dent 1985;53:397–401.

40. Stegenga B. Osteosarthritis of the temporomandibular joint organ and its relationship to disc displacement. J Orofac Pain 2001;15:193–205.

41. McCullagh P, Nelder JA. Generalized Linear Models. London: Chapman and Hall, 1983.

42. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Belmont, CA: Wadsworth, 1984.

43. Cox DR, Snell EJ. Analysis of Binary Data. London: Chapman and Hall, 1989:209.

44. Widmer CG, Lund JP, Feine JS. Evaluation of diagnostic tests for TMD. J Calif Dent Assoc 1990;18:53–60.

45. Altman DG, Andersen PK. Bootstrap investigation of the stability of a Cox regression model. Stat Med 1989;8: 771–783.

46. Derksen S, Keselman HJ. Backward, forward, and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. Br J Math Stat Psychol 1992;45:265–282.

47. Meunnissier M, Meunier A, Carpentier P. Disc movement over the condyle head. Radiographic study on autopsy material. J Oral Rehabil 1993;20:501–515.

48. Barclay P, Hollender LG, Maravilla KR, Truelove EL. Comparison of clinical and magnetic resonance imaging diagnosis in patients with disk displacement in the tem-poromandibular joint. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;88:37–43.

49. Pullinger AG, Seligman DA. TMJ Osteoarthrosis: A differentiation of diagnostic subgroups by symptom history and demographics. J Craniomand Disord 1987;1:251–256.

50. Könönen M, Waltimo W, Nyström M. Does clicking in adolescents lead to painful temporomandibular joint locking? Lancet 1996;347:1080–1081.

Abstracted / indexed in

Science Citation Index (SCI)

Science Citation Index Expanded (SCIE)

BIOSIS Previews

Scopus

Cumulative Index to Nursing and Allied Health Literature (CINAHL)

Submission Turnaround Time

Conferences

Top