Article Data

  • Views 310
  • Dowloads 26

Original Research

Open Access

Antinociceptive Effects of Citronellal in Formalin-, Capsaicin-, and Glutamate-Induced Orofacial Nociception in Rodents and Its Action on Nerve Excitability

  • Lucindo José Quintans-Júnior1,2,*,
  • Mônica S. Melo
  • Damião P. De Sousa
  • Adriano Antunes Souza Araújo
  • Alexandre C. S. Onofre
  • Daniel P. Gelain
  • Juan C. R. Gonçalves
  • Demétrius A. M. Araújo2
  • Jackson R. G. S. Almeida3
  • Leonardo R. Bonjardim1

1Departamento de Fisiologia, Universidade Federal de Sergipe Campus, Universitário, Brazil

2Laboratório de Tecnologia Farmacêutica, Universidade Federal da Paraíba, Brazil

3Nucleo de Estudos e Pesquisas de Plantas Medicinais, Universidade Federal do Vale do São, Francisco, Brazil

DOI: 10.11607/jofph.24.3.11 Vol.24,Issue 3,September 2010 pp.305-312

Published: 30 September 2010

*Corresponding Author(s): Lucindo José Quintans-Júnior E-mail: XXX

Abstract

Aims: To evaluate the antinociceptive effects of citronellal (CTL) on formalin-, capsaicin-, and glutamate-induced orofacial nociception in mice and to investigate whether such effects might involve a change in neural excitability. Methods: Male mice were pretreated with CTL (50, 100, and 200 mg/kg, ip), morphine (5 mg/kg, ip), or vehicle (distilled water + one drop of Tween 80 0.2%) before formalin (20 µL, 2%), capsaicin (20 µL, 2.5 µg) or glutamate (40 µL, 25 µM) injection into the right vibrissa. Sciatic nerve recordings were made using the single sucrose gap technique in rats. The data obtained were analyzed by ANOVA followed by Dunnett’s test for the behavioral analyses and by the Student t test for CAP evaluation. Results: Pretreatment with CTL was effective in reducing nociceptive face-rubbing behavior in both phases of the formalin test, which was also naloxone-sensitive. CTL produced significantly antinociceptive effect at all doses in the capsaicin- and glutamate- tests. Rotarod testing indicated that such results were unlikely to be provoked by motor abnormality. Recordings using the single sucrose gap technique revealed that CTL (10 mM) could reduce the excitability of the isolated sciatic nerve through a diminution of the compound action potential amplitude by about 42.4% from control recordings. Conclusion: These results suggest that CTL might represent an important tool for management and/or treatment of orofacial pain.

Keywords

antinociceptive;citronellal;neuronal excitability;orofacial pain;single sucrose gap technique

Cite and Share

Lucindo José Quintans-Júnior,Mônica S. Melo,Damião P. De Sousa,Adriano Antunes Souza Araújo,Alexandre C. S. Onofre,Daniel P. Gelain,Juan C. R. Gonçalves,Demétrius A. M. Araújo,Jackson R. G. S. Almeida,Leonardo R. Bonjardim. Antinociceptive Effects of Citronellal in Formalin-, Capsaicin-, and Glutamate-Induced Orofacial Nociception in Rodents and Its Action on Nerve Excitability. Journal of Oral & Facial Pain and Headache. 2010. 24(3);305-312.

References

1. Luccarini P, Cadet R, Saade M, Woda A. Antinociceptive effect of morphine microinjections into the spinal trigeminal subnucleus oralis. Neuroreport 1995;6:365–368.

2. Miranda HF, Sierralta F, Prieto JC. Synergism between NSAIDs in the orofacial formalin test in mice. Pharmacol Biochem Behav 2009;92:314–318.

3. Calixto JB, Beirith A, Ferreira J, Santos AR, Cechinel Filho V, Yunes RA. Naturally occurring antinociceptive substances from plants. Phytother Res 2000;14:401–418.

4. Almeida RN, Navarro DS, Barbosa-Filho JM. Plants with central analgesic activity. Phytomedicine 2001;8:310–322.

5. Quintans-Júnior LJ, Souza TT, Leite BS, et al. Phythochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents. Phytomedicine 2008;15:619–624.

6. Almeida RN, Motta SC, Faturi CB, Catallani B, Leite JR. Anxiolytic-like effects of rose oil inhalation on the elevated plus-maze test in rats. Pharmacol Biochem Behav 2004; 77:361–364.

7. Lenardão EJ, Botteselle GV, Azambuja F, Perin G, Jacob RG. Citronellal as key compound in organic synthesis. Tetrahedron 2007;63:6671–6712.

8. Holanda Pinto SA, Pinto LMS, Guedes MA, et al. Antinoceptive effect of triterpenoid alpha, beta-amyrin in rats on orofacial pain induced by formalin and capsaicin. Phytomedicine 2008;15:630–634.

9. Clavelou P, Dallel R, Orliaguel T, Woda A, Raboisson P. The orofacial formalin test in rats: Effect of different for-malin concentrations. Pain 1995;62:295–301.

10. Luccarini P, Childeric A, Gaydier AM, Voisin D, Dallel R. The orofacial formalin test in the mouse: A behavioral model for studying physiology and modulation of trigeminal nociception. Pain 2006;7:908–914.

11. Pellisier T, Pajot J, Dallel R. The orofacial capsaicin test in rats: Effects of different capsaicin concentrations and morphine. Pain 2002;96:81–87.

12. Beirith A, Santos ARS, Calixto JB. Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Res 2002;924:219–228.

13. Dunham NW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc 1957;46:208–209.

14. Vaz ZR, Cechinel Filho V, Yunes RA, Calixto JB. Antinociceptive action of 2-(4-bromobenzoyl)-3-methyl-4,6-dimethoxy benzofuran, a novel xanthoxyline derivative on chemical and thermal models of nociception in mice. J Pharmacol Exp Ther 1996;278:304–312.

15. Rosland JH, Tjoisen A, Maehle B, Hole K. The formalin test in mice, effect of formalin concentration. Pain 1990; 42:235–242.

16. Cruz JC, Matavel ACS, Leão-Filho HM, Moraes-Santos T, Beirão PSL. Tityustoxin effect on nerve compound action potentials requires extracellular sodium. Neurosci Lett 2000;282:25–28.

17. De Sousa DP, Gonçalves JC, Quintans-Júnior LJ, Cruz JS, Araujo DAM, Almeida RN. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neurosci Lett 2006;401:231–235.

18. Reanmongkol W, Matsumoto K, Watanabe H, Subhadhirasakul S, Sakai SI. Antinociceptive and antipyretic effects of alkaloids extracted from the stem bark of Hunteria zeylanica. Biol Pharm Bull 1994;17: 1345–1350.

19. Raboisson P, Dallel R. The orofacial formalin test. Neurosci Biobehav Rev 2004;28:219–226.

20. Dallel R, Raboisson P, Clavelou P, Saade M, Woda A. Evidence for a peripheral origin of the tonic nociceptive response to subcutaneous formalin. Pain 1995;61:11–16.

21. Capuano A, Corato A, Treglia M, Tringali G, Russo CD, Navarra P. Antinociceptive activity of buprenorphine and lumiracoxib in the rat orofacial formalin test: A combina-tion analysis study. Eur J Pharmacol 2009;605:57–62.

22. Belvisi MG, Chung KF, Jackson DM, Barnes PJ. Opioid modulation of noncholinergic neural bronchoconstriction in guineapig in vivo. Br J Pharmacol 1998;95:413–418.

23. Hu JW, Fiorentino PM, Cairns BE, Sessle BJ. Capsaicin-induced inflammation within temporomandibular joint involves VR-1 receptor mechanisms. Oral Biosci Med 2005;4:241–248.

24. Lam DK, Sessle BJ, Hu JW. Glutamate and capsaicin effects on trigeminal nociception I: Activation and peripheral sensitization of deep craniofacial nociceptive afferents. Brain Res 2009;1251:130–139.

25. Lam DK, Sessle BJ, Hu JW. Glutamate and capsaicin effects on trigeminal nociception II: Activation and central sensitization in brainstem neurons with deep craniofacial afferent input. Brain Res 2009;1253:48–59.

26. Honda K, Kitagawa J, Sessle BJ, et al. Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment. Mol Pain 2008;4:59.

27. Henry JL, Yashpal K, Pitcher GM, Chabot JG, Coderre TJ. An evidence for tonic activation of NK-1 receptors during the second phase of the formalin test in the rat. J Neurosci 1999;19:6588–6598.

28. Luccarini P, Henry M, Alvarez Gaydier AM, Dallel R. Contribution of neurokinin 1 receptors in the cutaneous orofacial cutaneous pain. Naunyn Schmiedebergs Arch Pharmacol 2003;368:320–323.

29. Waning J, Vriens J, Owsianik G, et al. A novel function of capsaicin-sensitive TRPV1 channels. Cell Calcium 2007; 42:17–25.

30. Vogt-Eisele AK, Weber K, Sherkheli MA, et al. Mono-terpenoid agonists of TRPV3. Br J Pharmacol 2007;151: 530–540.

31. Ichikawa H, Sugimoto T. VR1-immunoreactive primary sensory neurons in the rat trigeminal ganglion. Brain Res 2001;890:184–188.

32. Hou M, Uddman R, Tajti J, Kanje M, Edvinsson L. Capsaicin receptor immunoreactivity in the human trigeminal ganglion. Neurosci Lett 2002;330:223–226.

33. Xu HX, Blair NT, Clapham DE. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 2005;25:8924–8937.

34. Moqrich A, Hwang SW, Earley MJ, et al. Impaired ther-mosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 2005;307:1468–1472.

35. Xu HX, Delling M, Jun JC, Clapham DE. Oregano, thyme and clovederived flavors and skin sensitizers activate specific TRP Channels. Nat Neurosci 2006;9:628–635.

36. Keast JR, Stephensen TM. Glutamate and aspartate immunoreactivity in dorsal root ganglion cells supplying visceral and somatic targets and evidence for peripheral axonal transport. J Comp Neurol 2000;424:577–587.

37. Lam DK, Sessle BJ, Cairns BE, Hu JW. Neural mechanisms of temporomandibular joint and masticatory muscle pain: A possible role for peripheral glutamate receptor mechanisms. Pain Res Manag 2005;10:145–152.

38. Cairns BE, Sessle BJ, Hu JW. Evidence that excitatory amino acid receptors within the temporomandibular joint region are involved in the reflex activation of the jaw muscles. J Neurosci 1998;18:8056–8064.

39. Cairns BE, Hu JW, Arendt-Nielsen L, Sessle BJ, Svensson P. Sex-related differences in human pain and rat afferent discharge evoked by injection of glutamate into the masseter muscle. J Neurophysiol 2001;86:782–791.

40. Cairns BE, Sessle BJ, Hu JW. Characteristics of glutamate-evoked temporomandibular joint afferent activity in the rat. J Neurophysiol 2001;85:2446 –2454.

41. Cairns BE, Gambarota G, Svensson P, Arendt-Nielson L, Berde CB. Glutamate-induced sensitization of rat masseter muscle fibers. Neuroscience 2002;109:389–399.

42. Coggeshall RE, Carlton SM. Receptor localization in the mammalian dorsal horn and primary afferent neurons. Brain Res Rev 1997;24:28–66.

43. Ferreira J, Santos ARS, Calixto JB. The role of systemic, spinal and supraspinal L-arginine-nitric oxide-cGMP path-way in thermal hyperalgesia caused by intrathecal injection of glutamate in mice. Neuropharmacol 1999;38:835–842.

44. Batista PA, Werner MFP, Oliveira EC, et al. Evidence for the involvement of ionotropic glutamatergic receptors on the antinociceptive effect of (-)-linalool in mice. Neurosci Lett 2008;440:299–303.

45. Gonçalves JCR, Oliveira FS, Benedito RB, De Sousa DP, Almeida RN, Araújo DAM. Antinociceptive activity of (-)-carvone. Biol Pharm Bull 2008;31:1017–1020.

Abstracted / indexed in

Science Citation Index (SCI)

Science Citation Index Expanded (SCIE)

BIOSIS Previews

Scopus

Cumulative Index to Nursing and Allied Health Literature (CINAHL)

Submission Turnaround Time

Conferences

Top