Article Data

  • Views 324
  • Dowloads 23

Reviews

Open Access

Topical Review. Dental Pain and Odontoblasts: Facts and Hypotheses

  • Henry Magloire1,2,*,
  • Jean Christophe Maurin2,3
  • Marie Lise Couble2
  • Yoshiyuki Shibukawa4
  • Maki Tsumura4,5
  • Béatrice Thivichon-Prince2
  • Françoise Bleicher2

1Ecole Normale Super Lyon, Inst Genom Fonct Lyon, Equipe Odontoblaste & Regenerat Tissues Dent, CNRS,UMR 5242, F-69364 Lyon 08, France

2Univ Lyon, Lyon, France

3Univ Reims, Fac Odontol, Reims, France

4Tokyo Dent Coll, Dept Physiol, Chiba, Japan

5Toho Univ, Dept Clin Pharm, Funabashi, Chiba 274, Japan

DOI: 10.11607/jofph.24.4.02 Vol.24,Issue 4,December 2010 pp.335-349

Published: 30 December 2010

*Corresponding Author(s): Henry Magloire E-mail: magloire@univ-lyon1.fr

Abstract

Dental pain arises from exposed dentin following bacterial, chemical, or mechanical erosion of enamel and/or recession of gingiva. Thus, dentin tissue and more specifically patent dentinal tubules represent the first structure involved in dentin sensitivity. Interestingly, the architecture of dentin could allow for the transfer of information to the underlying dental pulp via odontoblasts (dentin-forming cells), via their apical extension bathed in the dentinal fluid running in the tubules, or via a dense network of trigeminal sensory axons intimately related to odontoblasts. Therefore, external stimuli causing dentinal fluid movements and odontoblasts and/or nerve complex responses may represent a unique mechanosensory system bringing a new role for odontoblasts as sensor cells. How cells sense signals and how the latter are transmitted to axons represent the main ques-tions to be resolved. However, several lines of evidence have demonstrated that odontoblasts express mechano- and/or thermosensitive transient receptor potential ion channels (TRPV1, TRPV2, TRPV3, TRPV4, TRPM3, KCa, TREK-1) that are likely to sense heat and/or cold or movements of dentinal fluid within tubules. Added to this, voltage-gated sodium channels confer excitable properties of odontoblasts in vitro in response to injection of depolarizing currents. In vivo, sodium channels colocalize with nerve terminals at the apical pole of odontoblasts and correlate with the spatial distribution of stretch-activated KCa channels. This highlights the terminal web as the pivotal zone of the pulp/dentin complex for sensing external stimuli. Crosstalk between odontoblasts and axons may take place by the release of mediators in the gap space between odontoblasts and axons in view of evidence for nociception-transducing receptors on trigeminal afferent fibers and expression of putative effectors by odontoblasts. Finally, how axons are guided to the target cells and which kind of signaling molecules are involved is extensively discussed in this review.

Keywords

dental pain;mechano/thermosensitivity;nerves;odontoblast;teeth

Cite and Share

Henry Magloire,Jean Christophe Maurin,Marie Lise Couble,Yoshiyuki Shibukawa,Maki Tsumura,Béatrice Thivichon-Prince,Françoise Bleicher. Topical Review. Dental Pain and Odontoblasts: Facts and Hypotheses. Journal of Oral & Facial Pain and Headache. 2010. 24(4);335-349.

References

1. Bartold PM. Dentinal hypersensitivity: A review. Aust Dent J 2006;51:212–218.

2. Brannstrom M, Astrom A. The hydrodynamics of the dentine; its possible relationship to dentinal pain. Int Dent J 1972;22:219–227.

3. Brannstrom M, Linden LA, Astrom A. The hydrodynamics of the dental tubule and of pulp fluid. A discussion of its significance in relation to dentinal sensitivity. Caries Res 1967;1:310–317.

4. Charoenlarp P, Wanachantararak S, Vongsavan N, Mat-thews B. Pain and the rate of dentinal fluid flow produced by hydrostatic pressure stimulation of exposed dentine in man. Arch Oral Biol 2007;52:625–631.

5. Chidchuangchai W, Vongsavan N, Matthews B. Sensory transduction mechanisms responsible for pain caused by cold stimulation of dentine in man. Arch Oral Biol 2007;52:154–160.

6. Linsuwanont P, Versluis A, Palamara JE, Messer HH. Thermal stimulation causes tooth deformation: A possible alternative to the hydrodynamic theory? Arch Oral Biol 2008;53:261–272.

7. Pashley DH, Matthews WG, Zhang Y, Johnson M. Fluid shifts across human dentine in vitro in response to hydrodynamic stimuli. Arch Oral Biol 1996;41:1065–1072.

8. Vongsavan N, Matthews B. The permeability of cat den-tine in vivo and in vitro. Arch Oral Biol 1991;36:641–646.

9. Matthews B, Andrew D, Amess T, Ikeda H, Vongsavan N. The functional properties of intradental nerves. In: Shi-mono M, Maeda T, Suda H, Takahashi K (eds). Dentin/Pulp Complex. Tokyo: Quintessence, 1996:146–153.

10. Gunji T. Morphological research on the sensitivity of den-tin. Arch Histol Jpn 1982;45:45–67.

11. Holland GR. Morphological features of dentine and pulp related to dentine sensitivity. Arch Oral Biol 1994; 39(suppl):3S–11S.

12. Byers MR. Dental sensory receptors. Int Rev Neurobiol 1984;25:39–94.

13. Byers MR. Terminal arborization of individual sensory axons in dentin and pulp rat molars. Brain Res 1985;345:181–185.

14. Baume LJ. The biology of pulp and dentine. A historic, terminologic-taxonomic, histologic-biochemical, embryonic and clinical survey. Monogr Oral Sci 1980;8:1–220.

15. Ruch JV, Lesot H, Begue-Kirn C. Odontoblast differentia-tion. Int J Dev Biol 1995;39:51–68.

16. Carda C, Peydro A. Ultrastructural patterns of human dentinal tubules, odontoblasts processes and nerve fibres. Tissue Cell 2006;38:141–150.

17. Hildebrand C, Fried K, Tuisku F, Johansson CS. Teeth and tooth nerves. Prog Neurobiol 1995;45:165–222.

18. Närhi M, Jyväsjärvi E, Virtanen A, Huopaniemi T, Ngas-sapa D, Hirvonen T. Role of intradental A- and C-type nerve fibres in dental pain mechanisms. Proc Finn Dent Soc 1992;88(suppl 1):507–516.

19. Byers MR, Närhi M. Dental injury models: Experimental tools for understanding neuroinflammatory interactions and polymodal nociceptor functions. Crit Rev Oral Biol Med 1999;10:4–39.

20. Byers MR, Suzuki H, Maeda T. Dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration. Mi-crosc Res Tech 2003;60:503–515.

21. Couve E. Ultrastructural changes during the life cycle of human odontoblasts. Arch Oral Biol 1986;31:643–651.

22. Sasaki T, Garant PR. Structure and organization of od-ontoblasts. Anat Rec 1996;245:235–249.

23. Yoshiba K, Yoshiba N, Ejiri S, Iwaku M, Ozawa H. Odontoblast processes in human dentin revealed by fluorescence labeling and transmission electron microscopy. Histochem Cell Biol 2002;118:205–212.

24. Sigal MJ, Aubin JE, Ten Cate AR. An immunocytochemical study of the human odontoblast process using antibodies against tubulin, actin, and vimentin. J Dent Res 1985;64:1348–1355.

25. Nishikawa S, Kitamura H. Localization of actin during differentiation of the ameloblast, its related epithelial cells and odontoblasts in the rat incisor using NBD-phallacidin. Differentiation 1986;30:237–243.

26. Larsson PA, Howell DS, Pita JC, Blanco LN. Aspiration and characterization of predentin fluid in developing rat teeth by means of a micropuncture and micro-analytical technique. J Dent Res 1988;67:870–875.

27. About I, Laurent-Maquin D, Lendahl U, Mitsiadis TA. Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am J Pathol 2000;157:287–295.

28. Butler WT, Ritchie H. The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol 1995;39:169–179.

29. MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem 1997;272: 835–842.

30. Maurin JC, Couble ML, Staquet MJ, et al. Microtubule-associated protein 1b, a neuronal marker involved in odontoblast differentiation. J Endod 2009;35:992–996.

31. Simon S, Smith AJ, Lumley PJ, et al. Molecular characterization of young and mature odontoblasts. Bone 2009;45: 693–703.

32. Unterbrink A, O’Sullivan M, Chen S, MacDougall M. TGF beta-1 down regulates DMP-1 and DSPP in odontoblasts. Connect Tissue Res 2002;43:354–358.

33. Lu Y, Xie Y, Zhang S, Dusevich T, Bonewald LF, Feng JQ. DMP-1 targeted CRE expression in odontoblasts and osteocytes. J Dent Res 2007;86:320–325.

34. Allard B, Magloire H, Couble ML, Maurin JC, Bleicher F. Voltagegated sodium channels confer excitability to human odontoblasts: Possible role in tooth pain transmission. J Biol Chem 2006;281:29002–29010.

35. Ibuki T, Kido MA, Kiyoshima T, Terada Y, Tanaka T. An ultrastructural study of the relationship between sensory trigeminal nerves and odontoblasts in rat dentin/pulp as demonstrated by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP). J Dent Res 1996;75:1963–1970.

36. Maurin JC, Couble ML, Didier-Bazes M, Brisson C, Magloire H, Bleicher F. Expression and localization of reelin in human odontoblasts. Matrix Biol 2004;23:277–285.

37. Byers MR, Närhi M, Dong WK. Sensory innervation of pulp and dentin in adult dog as demonstrated by autora-diography. Anat Rec 1987;218:207–215.

38. Calle A. Intercellular junctions between human odonto-blasts. A freeze-fracture study after demineralization. Acta Anat (Basel) 1985;122:138–144.

39. Ushiyama J. Gap junctions between odontoblasts revealed by transjunctional flux of fluorescent tracers. Cell Tissue Res 1989;258:611–616.

40. Turner DF, Marfurt CF, Sattelberg C. Demonstration of physiological barrier between pulpal odontoblasts and its perturbation following routine restorative procedures: A horseradish peroxidase tracing study in the rat. J Dent Res 1989;68:1262–1268.

41. About I, Proust JP, Raffo S, Mitsiadis TA, Franquin JC. In vivo and in vitro expression of connexin 43 in human teeth. Connect Tissue Res 2002;43:232–237.

42. Kagayama M, Akita H, Sasano Y. Immunohistochemical localization of connexin 4 in the developing tooth germ of rat. Anat Embryol 1995;191:561–568.

43. Ingber DE. Cellular mechanotransduction: Putting all the pieces together again. FASEB J 2006;20:811–827.

44. Wheatley DN, Wang AM, Strugnell GE. Expression of pri-mary cilia in mammalian cells. Cell Biol Int 1996;20:73–81.

45. Christensen ST, Pedersen LB, Satir P, Veland IR, Schneider

L. The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol 2008;85:261–301.

46. Haycraft CJ, Serra R. Cilia involvement in patterning and maintenance of the skeleton. Curr Top Dev Biol 2008;85:303–327.

47. Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis and disease. Cell 2009;137:32–45.

48. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: An emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006;7:125–148.

49. Pazour GJ, Witman GB. The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol 2003;15:105–110.

50. Praetorius HA, Spring KR. A physiological view of the primary cilium. Annu Rev Physiol 2005;67:515–529.

51. Nauli S, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 2008;117:1161–1171.

52. Magloire H, Couble ML, Romeas A, Bleicher F. Odontoblast primary cilia: Facts and hypotheses. Cell Biol Int 2004;28:93–99.

53. Magloire H, Couble ML, Thivichon-Prince B, Maurin JC, Bleicher F. Odontoblast: A mechanosensory cell [review]. J Exp Zool B Mol Dev Evol 2009;312B:416–424.

54. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Science 2010;123:499–503.

55. Ascenzi MG, Lenox M, Farnum C. Analysis of the orientation of primary cilia in growth plate cartilage: A mathematical method based on multiphoton microscopical images. J Struct Biol 2007;158:293–306.

56. Thivichon-Prince B, Couble ML, Giamarchi A, et al. Primary cilia of odontoblasts: Possible role in molar morphogenesis. J Dent Res 2009;88:910–915.

57. Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun 2004;322:1374–1383.

58. Giamarchi A, Padilla F, Coste B, et al. The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 2006;7:787–793.

59. Tsiokas L, Kim S, Ong EC. Cell biology of polycystin-2. Cell Signal 2007;19:444–453.

60. Marshall WF, Kintner C. Cilia orientation and the fluid mechanics of development. Curr Opin Cell Biol 2008;20:48–52.

61. Davidson RM. Potassium currents in cells derived from dental pulp. Arch Oral Biol 1993;38:803–811.

62. Guo L, Davidson RM. Potassium and chloride chan-nels in freshly isolated rat odontoblasts. J Dent Res 1998;77:341–350.

63. Allard B, Couble ML, Magloire H, Bleicher F. Char-acterization and gene expression of high conduct-ance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J Biol Chem 2000;275:25556–25561.

64. Shibukawa Y, Suzuki T. Ionic currents in odontoblasts and dental pulp cells. In: Nakamura Y and Sessle BJ (eds). Neurobiology of Mastication: From Molecular to System Approach. Amsterdam: Elsevier Science BV, 1999:165–168.

65. Seux D, Joffre A, Fosset M, Magloire H. Immunohisto-chemical localization of L-type calcium channels in the developing first molar of the rat during odontoblast differentiation. Arch Oral Biol 1994;39:167–170.

66. Lundgren T, Linde A. Voltage-gated calcium channels and non voltage-gated calcium uptake pathways in the rat incisor odontoblast plasma membrane. Calcif Tissue Int 1997;60:79–85.

67. Westenbroek RE, Anderson NL, Byers MR. Altered locali-zation of Cav1.2 (L-type) calcium channels in nerve fibers, Schwann cells, odontoblasts and fibroblasts of tooth pulp after tooth injury. J Neurosci Res 2004;75:371–383.

68. Shibukawa Y, Suzuki T. Ca2+ signaling mediated by IP3-dependent Ca2+ releasing and stored-operated Ca2+ channels in rat odontoblasts. J Bone Miner Res 2003;18:30–38.

69. Magloire H, Lesage F, Couble ML, Lazdunski M, Bleicher F. Expression and localization of TREK-1 K+ channels in human odontoblasts. J Dent Res 2003;82:542–545.

70. Honore E. The neuronal background K2P channels: Focus on TREK1. Nat Rev Neurosci 2007;8:251–261.

71. Murbartian J, Lei Q, Sando JJ, Bayliss DA. Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels. J Biol Chem 2005;280:30175–30184.

72. Lesage F, Lazdunski M. Molecular and functional proper-ties of two-pore-domain potassium channels [review]. Am J Physiol Renal Physiol 2000;279:F793–801.

73. Patel AJ, Honore E. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 2001;24:339–346.

74. Hassinger TD, Guthrie PB, Atkinson PB, Bennett MV, Kater SB. An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci USA 1996;93:13268–13273.

75. Shibukawa Y, Suzuki T. Measurements of cytosolic free Ca2+ concentrations in odontoblasts. Bull Tokyo Dent Coll 1997;38:177–185.

76. Markowitz K, Bilotto G, Kim S. Decreasing intradental nerve activity in the cat with potassium and divalent cations. Arch Oral Biol 1991;36:1–7.

77. Markowitz K, Pashley DH. Discovering new treatments for sensitive teeth: The long path from biology to therapy. J Oral Rehabil 2008;35:300–315.

78. Son AR, Yang YM, Hong JH, Lee SI, Shibukawa Y, Shin DM. Odontoblast TRP channels and thermo/mechanical transmission. J Dent Res 2009;88:1014–1019.

79. Dhaka A, Viswanath V, Patapoutian A. TRP ion chan-nels and temperature sensation. Annu Rev Neurosci 2006;29:135–161.

80. Cortright DN, Krause JE, Broom DC. TRP channels and pain. Biochim Biophys Acta 2007;1772:978–988.

81. Pedersen ST, Owsianik G, Nilius B. TRP channels: An overview. Cell Calcium 2005;233–252.

82. Park CK, Kim MS, Fang Z, et al. Function expression of thermotransient receptor potential channels in dental primary afferent neurons: Implication in tooth pain. J Biol Chem 2006;281:17304–17311.

83. Okumura R, Shima K, Muramatsu T, et al. The odonto-blast as a sensory receptor cell? The expression of TRPV1 (VR-1) channels. Arch Histol Cytol 2005;68:251–257.

84. Levine JD, Alessandri-Haber N. TRP channels: Targets for the relief of pain. Biochim Biophys Acta 2007;1772:989–1003.

85. Myers BR, Sigal YM, Julius D. Evolution of thermal response properties in a cold-activated TRP channel. PLoS One 2009;4:e5741.

86. Staaf S, Oerther S, Lucas G, Mattsson JP, Ernfors P. Differential regulation of TRP channels in a rat model of neuropathic pain. Pain 2009;144:187–199.

87. Okumura R, Shibukawa Y, Muramatsu T, et al. Sodiumcalcium exchangers in rat ameloblasts. J Pharmacol Sci 2010;112:223–230.

88. Tsumura M, Okumura R, Tatsuyama S, et al. Ca2+ extrusion via Na+-Ca2+ exchangers in rat odontoblasts. J Endod 2010;36:668–674.

89. Noel J, Zimmermann K, Busserolles J, et al. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 2009;28:1308–1318.

90. Davidson RM. Neural form of voltage-dependent sodium current in human cultured dental pulp cells. Arch Oral Biol 1994;39:613–620.

91. Joao SM, Arana-Chavez VE. Expression of connexin 43 and ZO-1 in differentiating ameloblasts and odontoblasts from rat molar tooth germs. Histochem Cell Biol 2003;119:21–26.

92. Murakami S, Muramatsu T, Shimono M. Expression and localization of connexin 43 in rat incisor odontoblasts. Anat Embryol 2001;203:367–374.

93. Fried K, Mitsiadis TA, Guerrier A, Haegerstrand A, Meister B. Combinatorial expression patterns of the connexins 26, 32, and 43 during development, homeostasis, and regeneration of rat teeth. Int J Dev Biol 1996;40:985–995.

94. Peracchia C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 2004;1662:61–80.

95. Trexler EB, Bukauskas FF, Bennett MV, Bargiello TA, Verselis VK. Rapid and direct effects of pH on connexins revealed by the connexin 46 hemichannel preparation. J Gen Physiol 1999;113:721–742.

96. Bhatnagar M, Cintra A, Tinner B, et al. Neurotensin-like immunoreactivity in odontoblasts and their processes in rat maxillary molar teeth and the effect of pulpotomy. Regul Pept 1995;58:141–147.

97. Korkmaz Y, Baumann MA, Steinritz D, et al. NO-cGMP signaling molecules in cells of the rat molar dentinpulp complex. J Dent Res 2005;84:618–623.

98. McCormack K, Davies R. The enigma of potassium ion in the management of dentine hypersensitivity: Is nitric oxide the elusive second messenger? Pain 1996;68:5–11.

99. Cook SP, McCleskey EW. Desensitization, recovery and Ca(2+)-dependent modulation of ATP-gated P2X receptors in nociceptors. Neuropharmacology 1997;36:1303–1308.

100. Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD. The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 2007;104:6436–6441.

101. Roper SD. Signal transduction and information processing in mammalian taste buds. Pflugers Arch 2007;454: 759–776.

102. Suzuki T. Cellular mechanisms in taste buds. Bull Tokyo Dent Coll 2007;48:151–161.

103. Staikopoulos V, Sessle BJ, Furness JB, Jennings EA. Localization of P2X2 and P2X3 receptors in rat trigeminal ganglion neurons. Neuroscience 2007;144:208–216.

104. Kim YS, Paik SK, Cho YS, et al. Expression of P2X3 receptor in the trigeminal sensory nuclei of the rat. J Comp Neurol 2008;506:627–639.

105. Alavi AM, Dubyak GR, Burnstock G. Immunohistochemical evidence for ATP receptors in human dental pulp. J Dent Res 2001;80:476–483.

106. Renton T, Yiangou Y, Baecker PA, Ford AP, Anand P. Capsaicin receptor VR1 and ATP purinoceptor P2X3 in painful and non painful human tooth pulp. J Orofac Pain 2003; 17:245–250.

107. Bao L, Locovei S, Dahl G. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 2004;572:65–68.

108. Fitz JG. Regulation of cellular ATP release. Trans Am Clin Climatol Assoc 2007;118:199–208.

109. Ma W, Hui H, Pelegrin P, Surprenant A. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 2009;328:409–418.

110. Penuela S, Bhalla R, Gong XQ, et al. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 2007;120:3772–3783.

111. Thompson RJ, Macvicar BA. Connexin and pannexin hemichannels of neurons and astrocytes. Channels (Austin) 2008 Mar 29;2[epub ahead of print].

112. Mechenthaler I. Galanin and the neuroendocrine axes. Cell Mol Life Sci 2008;65:1826–1835.

113. Paakkonen V, Bleicher F, Carrouel F, et al. General expression profiles of human native odontoblasts and pulpderived cultured odontoblast-like cells are similar but reveal differential neuropeptide expression levels. Arch Oral Biol 2009;54:55–62.

114. Ratcliffe CF, Qu Y, McCormick KA, et al. A sodium channel signaling complex: Modulation by associated receptor protein tyrosine phosphatase beta. Nat Neurosci 2000;3: 437–444.

115. Suzuki H, Iwanaga T, Yoshie H, et al. Expression of gala-nin receptor-1 (GALR1) in the rat trigeminal ganglia and molar teeth. Neurosci Res 2002;42:197–207.

116. Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol 2002;66:19–59.

117. Fornaro M, Lee JM, Raimondo S, Nicolino S, Geuna S, Giacobini-Robecchi M. Neuronal intermediate filament expression in rat dorsal root ganglia sensory neurons: An in vivo and in vitro study. Neuroscience 2008;153: 1153–1163.

118. Zubrzycka M, Janecka A. Effect of galanin on substance P- and vasoactive intestinal polypeptide-induced nociceptive trigemino-hypoglossal reflex in rats. J Physiol Phar-macol 2007;58:479–486.

119. Hermanstyne TO, Markowitz K, Fan L, Gold MS. Mechanotransducters in rat pulpal afferents. J Dent Res 2008;87:834–838.

120. Luukko K, Moe K, Sijaona A, et al. Secondary induction and the development of tooth nerve supply. Ann Anat 2008;190:178–187.

121. Fried K, Nosrat C, Lillesaar C, Hildebrand C. Molecular signaling and pulpal nerve development. Crit Rev Oral Biol Med 2000;11:318–332.

122. Kvinnsland IH, Luukko K, Fristad I, et al. Glial cell line-derived neurotrophic factor (GDNF) from adult rat tooth serves a distinct population of large-sized trigeminal neurons. Eur J Neurosci 2004;19:2089–2098.

123. Lillesaar C, Eriksson C, Johansson CS, Fried K, Hilde-brand C. Tooth pulp tissue promotes neurite outgrowth from rat trigeminal ganglia in vitro. J Neurocytol 1999; 28:663–670.

124. Dickson BJ. Molecular mechanisms of axon guidance. Science 2002;298:1959–1964.

125. Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996; 274:1123–1133.

126. Fuchikawa T, Nakamura F, Fukuda N, Takei K, Goshima Y. Protein tyrosine phosphatase SHP2 is involved in Semaphorin 4D-induced axon repulsion. Biochem Biophys Res Commun 2009;385:6–10.

127. Ulupinar E, Datwani A, Behar O, Fujisawa H, Erzurumlu R. Role of semaphorin III in the developing rodent trigeminal system. Mol Cell Neurosci 1999;13:281–292.

128. Abe M, Inagaki S, Furuyama T, Iwamoto M, Wakisaka S. Semaphorin 4D inhibits collagen synthesis of rat pulpderived cells. Arch Oral Biol 2008;53:27–34.

129. Loes S, Kettunen P, Kvinnsland IH, Taniguchi M, Fujisawa H, Luukko K. Expression of class 3 semaphorins and neuropilin receptors in the developing mouse tooth. Mech Dev 2001;101:191–194.

130. Lillesaar C, Fried K. Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage. Neu-roscience 2004;125:149–161.

131. Luukko K, Loes S, Kvinnsland IH, Kettunen P. Expression of ephrin-A ligands and EphA receptors in the developing mouse tooth and its supporting tissues. Cell Tissue Res 2005;319:143–152.

132. Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M. The morphogen sonic hedgehog is an axonal chemoat-tractant that collaborates with netrin-1 in midline axon guidance. Cell 2003;113:11–23.

133. Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL. Semaphorin 7A promotes axon outgrowth through inte-grins and MAPKs. Nature 2003;424:398–405.

134. Maurin JC, Delorme G, Machuca-Gayet I, et al. Odontoblast expression of semaphorin 7A during innervation of human dentin. Matrix Biol 2005;24:232–238.

135. Chen S, Rio C, Ji RR, et al. Disruption of ErbB receptor signaling in adult nonmyelinating Schwann cells causes progressive sensory loss. Nat Neurosci 2003;6:1186–1193.

136. Fried K, Risling M, Tidcombe H, Gassmann M, Lillesaar C. Expression of ErbB3, ErbB4, and neuregulin-1 mRNA during tooth development. Dev Dyn 2002;224:356–360.

137. Anderson DJ, Matthews B, Shelton LE. Variations in the sensitivity to osmotic stimulation of human dentine. Arch Oral Biol 1967;12:43–47.

138. Fried K, Sime W, Lillesaar C, Virtanen I, Tryggvasson K, Patarroyo M. Laminins 2 (alpha2 beta1 gamma1, Lm-211) and 8 (alpha4 beta1 gamma1, Lm-411) are synthesized and secreted by tooth pulp fibroblasts and differentially promote neurite outgrowth from trigeminal ganglion sensory neurons. Exp Cell Res 2005;307:329–341.

139. Salmivirta K, Sorokin LM, Ekblom P. Differential expression of laminin alpha chains during murine tooth development. Dev Dyn 1997;210:206–215.

140. Luckenbill-Edds L. Laminin and the mechanism of neu-ronal outgrowth. Brain Res Rev 1997;23:1–27.

141. Wallquist W, Patarroyo M, Thams S, et al. Laminin chains in rat and human peripheral nerve: Distribution and regulation during development and after axonal injury. J Comp Neurol 2002;454:284–293.

142. Byers MR, Kvinnsland I, Bothwell M. Analysis of low affinity nerve growth factor receptor during pulpal healing and regeneration of myelinated and unmyelinated axons in replanted teeth. J Comp Neurol 1992;326:470–484.

143. Borrell V, Del Rio JA, Alcantara S, et al. Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J Neurosci 1999;19: 1345–1358.

144. Teillon SM, Yiu G, Walsh CA. Reelin is expressed in the accessory olfactory system, but is not a guidance cue for vomeronasal axons. Brain Res Dev Brain Res 2003;140:303–307.

145. Durand SH, Flacher V, Romeas A, et al. Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts. J Immunol 2006;176:2880–2887.

146. Farges JC, Keller JF, Carrouel F, et al. Odontoblasts in the dental pulp immune response. J Exp Zool B Mol Dev Evol 2009;312B:425–436.

147. Keller JF, Carrouel F, Colomb E, et al. Toll-like receptor 2 activation by lipoteichoic acid induces differential production of proinflammatory cytokines in human odontoblasts, dental pulp fibroblasts and immature dendritic cells. Immunobiology 2010;215:53–59.

148. Hahn CL, Liewehr FR. Innate immune responses of the dental pulp to caries. J Endod 2007;33:643–651.

149. Ngassapa D, Närhi M, Hirvonen T. Effect of serotonin (5-HT) and calcitonin generelated peptide (CGRP) on the function of intradental nerves in the dog. Proc Finn Dent Soc 1992;88(suppl 1):143–148.

150. Kim YS, Kim YJ, Paik SK, et al. Expression of metabotropic glutamate receptor mGluR5 in human dental pulp. J Endod 2009;35:690–694.

151. Birchmeier C, Nave KA. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 2008;56:1491–1497.

152. Chen S, Velardez MO, Warot X, et al. Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci 2006;26:3079–3086.

153. Felszeghy S, Modis L, Németh P, et al. Expression of aqua-porin isoforms during human and mouse tooth develop-ment. Arch Oral Biol 2004;49:247–257.

154. Hou J, Situ Z, Duan X. CIC chloride channels in tooth germ and odontoblast-like MDPC-23 cells. Arch Oral Biol 2008;53:874–878.

Abstracted / indexed in

Science Citation Index (SCI)

Science Citation Index Expanded (SCIE)

BIOSIS Previews

Scopus

Cumulative Index to Nursing and Allied Health Literature (CINAHL)

Submission Turnaround Time

Conferences

Top