Article Data

  • Views 316
  • Dowloads 21

Original Research

Open Access

Magnetic Resonance Imaging of the Temporomandibular Joint Disc: Feasibility of Novel Quantitative Magnetic Resonance Evaluation Using Histologic and Biomechanical Reference Standards

  • Hatice T. Sanal2
  • Won C. Bae1
  • Chantal Pauli3
  • Jiang Du1
  • Sheronda Statum1
  • Richard Znamirowski4
  • Robert L. Sah1
  • Christine B. Chung5,*,

1Univ Calif San Diego, Dept Radiol, San Diego, CA 92103 USA

2Gulhane Mil Med Fac, Dept Radiol, Ankara, Turkey

3Scripps Clin, Shiley Ctr Orthoped Res & Educ, La Jolla, CA 92037 USA

4Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA

5VA San Diego Healthcare Syst, San Diego, CA USA

DOI: 10.11607/jofph.25.4.08 Vol.25,Issue 4,December 2011 pp.345-353

Published: 30 December 2011

*Corresponding Author(s): Christine B. Chung E-mail: cbchung@ucsd.edu

Abstract

Aims: To use the ultrashort time-to-echo magnetic resonance imaging (UTE MRI) technique to quantify short T2* properties (obtained through gradient echo) of a disc from the human temporomandibular joint (TMJ) and to corroborate regional T2* values with biomechanical properties and histologic appearance of the discal tissues. Methods: A cadaveric human TMJ was sliced sagittally and imaged by conventional and UTE MRI techniques. The slices were then subjected to either biomechanical indentation testing or histologic evaluation, and linear regression was used for comparison to T2* maps obtained from UTE MRI data. Feasibility of in vivo UTE MRI was assessed in two human volunteers. Results: The UTE MRI technique of the specimens provided images of the TMJ disc with greater signal-to-noise ratio (~3 fold) and contrast against surrounding tissues than conventional techniques. Higher T2* values correlated with lower indentation stiffness (softer) and less collagen organization as indicated by polarized light microscopy. T2* values were also obtained from the volunteers. Conclusion: UTE MRI facilitates quantitative characterization of TMJ discs, which may reflect structural and functional properties related to TMJ dysfunction.

Keywords

indentation;magnetic resonance imaging;osteoarthritis, temporomandibular joint disc;ultrashort time-to-echo

Cite and Share

Hatice T. Sanal,Won C. Bae,Chantal Pauli,Jiang Du,Sheronda Statum,Richard Znamirowski,Robert L. Sah,Christine B. Chung. Magnetic Resonance Imaging of the Temporomandibular Joint Disc: Feasibility of Novel Quantitative Magnetic Resonance Evaluation Using Histologic and Biomechanical Reference Standards. Journal of Oral & Facial Pain and Headache. 2011. 25(4);345-353.

References

1. Alomar X, Medrano J, Cabratosa J, et al. Anatomy of the temporomandibular joint. Semin Ultrasound CT MR 2007;28: 170–183.

2. Hayt MW, Abrahams JJ, Blair J. Magnetic resonance imag-ing of the temporomandibular joint. Top Magn Reson Imaging 2000;11:138–146.

3. Klasser GD, Greene CS. The changing field of temporomandibular disorders: What dentists need to know. J Can Dent Assoc 2009;75:49–53.

4. Ahmad M, Hollender L, Anderson Q, et al. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): Development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:844–860.

5. Ren YF, Westesson PL, Isberg A. Magnetic resonance imaging of the temporomandibular joint: Value of pseudodynamic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;81:110–123.

6. Cavalcanti MG, Lew D, Ishimaru T, Ruprecht A. MR imaging of the temporomandibular joint: A validation experiment in vitro. Acad Radiol 1999;6:675–679.

7. Chirani RA, Jacq JJ, Meriot P, Roux C. Temporomandibular joint: A methodology of magnetic resonance imaging 3-D reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:756–761.

8. Stehling C, Vieth V, Bachmann R, et al. High-resolution magnetic resonance imaging of the temporomandibular joint: Image quality at 1.5 and 3.0 tesla in volunteers. Invest Radiol 2007;42:428–434.

9. Vilanova JC, Barcelo J, Puig J, Remollo S, Nicolau C, Bru C. Diagnostic imaging: Magnetic resonance imaging, computed tomography, and ultrasound. Semin Ultrasound CT MR 2007;28:184–191.

10. Hayakawa Y, Kober C, Otonari-Yamamoto M, Otonari T, Wakoh M, Sano T. An approach for three-dimensional visualization using high-resolution MRI of the temporomandibular joint. Dentomaxillofac Radiol 2007;36:341–347.

11. Wang EY, Mulholland TP, Pramanik BK, et al. Dynamic sagittal half-Fourier acquired single-shot turbo spinecho MR imaging of the temporomandibular joint: Initial experience and comparison with sagittal oblique proton-attenuation images. AJNR Am J Neuroradiol 2007;28:1126–1132.

12. Shimazaki Y, Saito K, Matsukawa S, et al. Image quality using dynamic MR imaging of the temporomandibular joint with true-FISP sequence. Magn Reson Med Sci 2007;6: 15–20.

13. Abolmaali ND, Schmitt J, Schwarz W, Toll DE, Hinterwimmer S, Vogl TJ. Visualization of the articular disk of the temporomandibular joint in near-real-time MRI: Feasibility study. Eur Radiol 2004;14:1889–1894.

14. Tomura N, Otani T, Narita K, et al. Visualization of anterior disc displacement in temporomandibular disorders on contrast-enhanced magnetic resonance imaging: Comparison with T2-weighted, proton density-weighted, and precontrast T1-weighted imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:260–266.

15. Hall-Craggs MA, Porter J, Gatehouse PD, Bydder GM. Ul-trashort echo time (UTE) MRI of the spine in thalassaemia. Br J Radiol 2004;77:104–110.

16. Reichert IL, Benjamin M, Gatehouse PD, et al. Magnetic resonance imaging of periosteum with ultrashort TE pulse sequences. J Magn Reson Imaging 2004;19:99–107.

17. Reichert IL, Robson MD, Gatehouse PD, et al. Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 2005;23:611–618.

18. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: An introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 2003;27:825–846.

19. Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed 2006; 19:765–780.

20. Gatehouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 2003;58:1–19.

21. Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: Technical considerations. J Magn Reson Imaging 2007;25:279–289.

22. Bae WC, Temple MM, Amiel D, Coutts RD, Niederauer GG, Sah RL. Indentation testing of human cartilage: Sensitivity to articular surface degeneration. Arthritis Rheum 2003; 48:3382–3394.

23. Lyyra T, Kiviranta I, Vaatainen U, Helminen HJ, Jurvelin JS. In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res 1999; 48:482–487.

24. Frank EH, Grodzinsky AJ. Cartilage electromechanics-II. A continuum model of cartilage electrokinetics and correlation with experiments. J Biomech 1987;20:629–639.

25. Bae WC, Law AW, Amiel D, Sah RL. Sensitivity of indentation testing to step-off edges and interface integrity in cartilage repair. Ann Biomed Eng 2004;32:360–369.

26. Nieminen MT, Rieppo J, Toyras J, et al. T2 relaxation reveals spatial collagen architecture in articular cartilage: A comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 2001;46:487–493.

27. Rieppo J, Hallikainen J, Jurvelin JS, Helminen HJ, Hyttinen MM. Novel quantitative polarization microscopic assessment of cartilage and bone collagen birefringence, orientation and anisotropy [abstract]. Trans Orthop Res Soc 2003;28:570.

28. Greene AR. TMJ and the test of time. Quintessence Int Dent Dig 1982;13:1255–1257.

29. Whyte AM, McNamara D, Rosenberg I, Whyte AW. Magnetic resonance imaging in the evaluation of temporomandibular joint disc displacement. A review of 144 cases. Int J Oral Maxillofac Surg 2006;35:696–703.

30. Emshoff R, Rudisch A. Are internal derangement and osteoarthrosis linked to changes in clinical outcome measures of arthrocentesis of the temporomandibular joint? J Oral Maxillofac Surg 2003;61:1162–1170.

31. Lieberman JM, Gardner CL, Motta AO, Schwartz RD. Prevalence of bone marrow signal abnormalities observed in the temporomandibular joint using magnetic resonance imaging. J Oral Maxillofac Surg 1996;54:434–440.

32. Detamore MS, Orfanos JG, Almarza AJ, French MM, Wong ME, Athanasiou KA. Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol 2005;24:45–57.

33. Clement C, Bravetti P, Plenat F, et al. Quantitative analysis of the elastic fibres in the human temporomandibular articular disc and its attachments. Int J Oral Maxillofac Surg 2006; 35:1120–1126.

34. Leonardi R, Villari L, Bernasconi G, Caltabiano M. Histochemical study of the elastic fibers in pathologic human temporomandibular joint discs. J Oral Maxillofac Surg 2001;59: 1186–1192.

35. Katzberg RW, Tallents RH. Normal and abnormal temporomandibular joint disc and posterior attachment as depicted by magnetic resonance imaging in symptomatic and asympto-matic subjects. J Oral Maxillofac Surg 2005;63:1155–1161.

36. Schellhas KP, Fritts HM, Heithoff KB, Jahn JA, Wilkes CH, Omlie MR. Temporomandibular joint: MR fast scanning. Cranio 1988;6:209–216.

37. Helms CA, Kaban LB, McNeill C, Dodson T. Temporomandibular joint: Morphology and signal intensity characteristics of the disk at MR imaging. Radiology 1989;172:817–820.

38. Orhan K, Arslan A, Kocyigit D. Temporomandibular joint osteochondritis dissecans: Case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:e41–46.

39. Benbelaid R, Fleiter B, Zouaoui A, Gaudy JF. Proposed graphical system of evaluating disccondyle displacements of the temporomandibular joint in MRI. Surg Radiol Anat 2005;27:361–367.

40. Emshoff R, Rudisch A, Innerhofer K, Brandlmaier I, Moschen I, Bertram S. Magnetic resonance imaging findings of internal derangement in temporomandibular joints without a clinical diagnosis of temporomandibular disorder. J Oral Rehabil 2002;29:516–522.

41. Foucart JM, Pajoni D, Carpentier P, Pharaboz C. MRI study of temporomandibular joint disk behavior in chilren with hperpropulsion appliances. Orthod Fr 1998;69:79–91.

42. Milano V, Desiate A, Bellino R, Garofalo T. Magnetic resonance imaging of temporomandibular disorders: Classification, prevalence and interpretation of disc displacement and deformation. Dentomaxillofac Radiol 2000;29:352–361.

43. Rao VM, Bacelar MT. MR imaging of the temporomandibular joint. Neuroimaging Clin N Am 2004;14:761–775.

44. Schmitter M, Kress B, Ludwig C, Koob A, Gabbert O, Rammelsberg P. Temporomandibular joint disk position assessed at coronal MR imaging in asymptomatic volunteers. Radiol-ogy 2005;236:559–564.

45. Yamada I, Murata Y, Shibuya H, Suzuki S. Internal derangements of the temporomandibular joint: Comparison of assessment with three-dimensional gradient-echo and spin-echo MRI. Neuroradiology 1997;39:661–667.

46. Limchaichana N, Petersson A, Rohlin M. The efficacy of magnetic resonance imaging in the diagnosis of degenerative and inflammatory temporomandibular joint disorders: A systematic literature review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:521–536.

47. Otonari T, Wakoh M, Sano T, Yamamoto M, Ohkubo M, Harada T. Parameters for diffusion weighted magnetic resonance imaging for temporomandibular joint. Bull Tokyo Dent Coll 2006;47:5–12.

48. Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: Projection reconstruction MR imaging. Radiology 1991;179: 777–781.

49. Bredella MA, Tirman PF, Peterfy CG, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: Comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 1999;172: 1073–1080.

50. Gold GE, Thedens DR, Pauly JM, et al. MR imaging of articular cartilage of the knee: New methods using ultrashort TEs. AJR Am J Roentgenol 1998;170:1223–1226.

51. Tanne K, Tanaka E, Sakuda M. The elastic modulus of the temporomandibular joint disc from adult dogs. J Dent Res 1991; 70:1545–1548.

52. Kim KW, Wong ME, Helfrick JF, Thomas JB, Athanasiou KA. Biomechanical tissue characterization of the superior joint space of the porcine temporomandibular joint. Ann Biomed Eng 2003;31:924–930.

53. Tanaka E, Tanaka M, Hattori Y, et al. Biomechanical behaviour of bovine temporomandibular articular discs with age. Arch Oral Biol 2001;46:997–1003.

54. Luder HU. Factors affecting degeneration in human temporomandibular joints as assessed histologically. Eur J Oral Sci 2002;110:106–113.

55. Akizuki S, Mow VC, Muller F, Pita JC, Howell DS, Manicourt DH. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res 1986;4:379–392.

56. Roberts S, Weightman B, Urban J, Chappell D. Mechanical and biochemical properties of human articular cartilage in osteoarthritic femoral heads and in autopsy specimens. J Bone Joint Surg Br 1986;68:278–288.

57. Detamore MS, Athanasiou KA. Tensile properties of the porcine temporomandibular joint disc. J Biomech Eng 2003; 125:558–565.

58. Samosky JT, Burstein D, Eric Grimson W, Howe R, Martin S, Gray ML. Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J Orthop Res 2005;23:93–101.

Abstracted / indexed in

Science Citation Index (SCI)

Science Citation Index Expanded (SCIE)

BIOSIS Previews

Scopus

Cumulative Index to Nursing and Allied Health Literature (CINAHL)

Submission Turnaround Time

Conferences

Top