Article Data

  • Views 299
  • Dowloads 22

Original Research

Open Access

Differential Effect of Articaine on Sarcoendoplasmic Reticulum Calcium Adenosine Triphosphatase of Medial Pterygoid Muscle

  • Carolina de la Cal1
  • Gabriel Germán Trinks1
  • Santiago Corti1
  • Gabriel Antonio Sánchez1,*,

1Cátedra de Biofísica y Bioestadística, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina

DOI: 10.11607/ofph.1835 Vol.31,Issue 4,December 2017 pp.21-28

Published: 30 December 2017

*Corresponding Author(s): Gabriel Antonio Sánchez E-mail: gabriel@odon.uba.ar

Abstract

Aims: To determine the effect of articaine on sarcoendoplasmic reticulum calcium adenosine triphosphatase (SERCA) isoforms of the medial pterygoid muscle. Methods: Native SERCA from the medial pterygoid muscles of 24 rabbits was isolated by ultracentrifugation, and its isoforms were purified by chromatography and assessed by enzyme-linked immunosorbent assay (ELISA). SERCA activity and calcium transport capability were determined by using colorimetric and radioisotopic methods. The mean ± standard deviation (SD) half maximal inhibitory concentration (IC50) of articaine was determined for each isoform, and these values were compared by using analysis of variance (ANOVA) (P < .05). Results: The native SERCA preparation consisted of 34% SERCA1a, 53% SERCA2a, 10% SERCA2b, and 3% combined SERCA3 and SERCA1b. Articaine caused inhibition of activity and calcium uptake in the native SERCA preparation and in each of the purified isoforms. The IC50 (mM) values for enzymatic activity were: SERCA1a 22.0 ± 2.3 > SERCA2a 16.4 ± 2.4 > SERCA2b 11.3 ± 1.9, and 15.1 ± 2.1 for native SERCA. For calcium transport, IC50 values were: SERCA1a 31.1 ± 3.3 > SERCA2a 24.8 ± 1.8 > SERCA2b 21.5 ± 1.5, and 25.2 ± 3.2 for native SERCA. IC50 values for inhibition of enzymatic activity were significantly different among the purified isoforms, but only the value obtained for SERCA1a was significantly different compared to native SERCA. For inhibition of calcium transport, IC50 values for both SERCA2a and SERCA2b differed significantly compared to SERCA1a, and the value for SERCA1a was significantly different compared to native SERCA. The most articaine-sensitive isoform was SERCA2b, and the native preparation showed sensitivity similar to SERCA2a. Conclusion: The differential inhibition of articaine on medial pterygoid SERCA isoforms is evident at concentrations lower than used in current dental practice (125 mM) and accounts for anesthetic myotoxicity. Muscle relaxation likely becomes impaired as a result of increased calcium levels in the myoplasm due to the decreased activity and calcium transport caused by the inhibition of SERCA.

Keywords

articaine; local anesthetics; masticatory muscles; medial pterygoid muscle; SERCA


Cite and Share

Carolina de la Cal,Gabriel Germán Trinks,Santiago Corti,Gabriel Antonio Sánchez. Differential Effect of Articaine on Sarcoendoplasmic Reticulum Calcium Adenosine Triphosphatase of Medial Pterygoid Muscle. Journal of Oral & Facial Pain and Headache. 2017. 31(4);21-28.

References

1. Sano R, Tanaka E, Korfage JA, et al. Heterogeneity of fiber characteristics in the rat masseter and digastric muscles. J Anat 2007;211:464–470.

2. Korfage JA, Koolstra JH, Langenbach GE, van Eijden TM. Fiber-type composition of the human jaw muscles—(Part 1) origin and functional significance of fiber-type diversity. J Dent Res 2005;84:774–783.

3. Grünheid T, Langenbach GE, Korfage JA, Zentner A, van Eijden TM. The adaptive response of jaw muscles to varying functional demands. Eur J Orthod 2009;31:596–612.

4. de Jong WC, Korfage JA, Langenbach GE. The role of masticatory muscles in the continuous loading of the mandible. J Anat 2011;218:625–636.

5. De Rossi SS, Stern I, Sollecito TP. Disorders of the masticatory muscles. Dent Clin North Am 2013;57:449–464.

6. Reed KL, Malamed SF, Fonner AM. Local anesthesia part 2: Technical considerations. Anesth Prog 2012;59:127–136.

7. Sánchez GA, Takara D, Toma AF, Alonso GL. Characteristics of the sarcoplasmic reticulum Ca2+-dependent ATPase from masticatory muscles. J Dent Res 2004;83:557–561.

8. Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 1992;267:14483–14489.

9. Toyoshima C, Inesi G. Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 2004;73:269–292.

10. Grover AK, Khan I. Calcium pump isoforms: Diversity, selectivity and plasticity. Review article. Cell Calcium 1992;13:9–17.

11. Vangheluwe P, Raeymaekers L, Dode L, Wuytack F. Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: Cell biological implications. Cell Calcium 2005;38: 291–302.

12. Periasamy M, Bhupathy P, Babu GJ. Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res 2008;77:265–273.

13. Dode L, Vilsen B, Van Baelen K, Wuytack F, Clausen JD, Andersen JP. Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses. J Biol Chem 2002;277:45579–45591.

14. Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 1991;266:17067–17071.

15. Sánchez GA, Trinks PW, Richard SB, Di Croce DE, Takara D. Expression of sarcoplasmic-endoplasmic reticulum Ca-ATPase isoforms in masticatory muscles. Eur J Oral Sci 2014;122:36–41.

16. Padera R, Bellas E, Tse JY, Hao D, Kohane DS. Local myotoxicity from sustained release of bupivacaine from microparticles. Anesthesiology 2008;108:921–928.

17. Pere P, Watanabe H, Pitkänen M, Wahlström T, Rosenberg PH. Local myotoxicity of bupivacaine in rabbits after continuoussupraclavicular brachial plexus block. Reg Anesth 1993; 18:304–307.

18. Jia X, Colombo G, Padera R, Langer R, Kohane DS. Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials 2004;25:4797–4804.

19. Zimmer C, Piepenbrink K, Riest G, Peters J. Cardiotoxic and neurotoxic effects after accidental intravascular bupivacaine administration. Therapy with lidocaine propofol and lipid emulsion [in German]. Anaesthesist 2007;56:449–453.

20. Plank C, Hofmann P, Gruber M, et al. Modification of bupivacaine-induced myotoxicity with dantrolene and caffeine in vitro. Anesth Analg 2016;122:418–423.

21. Yamashita A, Matsumoto M, Matsumoto S, Itoh M, Kawai K, Sakabe T. A comparison of the neurotoxic effects on the spinalcord of tetracaine, lidocaine, bupivacaine, and ropivacaine administered intrathecally in rabbits. Anesth Analg 2003;97:512–519.

22. Kohane DS, Lipp M, Kinney RC, et al. Biocompatibility of lipid-protein-sugar particles containing bupivacaine in the epineurium. J Biomed Mater Res 2002;59:450–459.

23. Wolosker H, Pacheco AG, de Meis L. Local anesthetics induce fast Ca2+ efflux through a nonenergized state of the sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem 1992; 267:5785–5789.

24. Kutchai H, Mahaney JE, Geddis LM, Thomas DD. Hexanol and lidocaine affect the oligomeric state of the Ca-ATPase of sarcoplasmic reticulum. Biochemistry 1994;33:13208–13222.

25. Takara D, Sánchez GA, Alonso GL. Effect of carticaine on the sarcoplasmic reticulum Ca2+-dependent adenosine triphosphatase. Naunyn Schmiedebergs Arch Pharmacol 2000; 362:497–503.

26. Takara D, Sánchez GA, Toma AF, Bonazzola P, Alonso GL. Effect of carticaine on the sarcoplasmic reticulum Ca2+-adenosine triphosphatase. II. Cations dependence. Naunyn Schmiedebergs Arch Pharmacol 2005;371:375–382.

27. Sánchez GA, Takara D, Alonso GL. Local anesthetics inhibit Ca-ATPase in masticatory muscles. J Dent Res 2010; 89:372–377.

28. Sánchez GA, Casadoumecq AC, Alonso GL, Takara D. Inhibitory effect of lidocaine on the sarcoplasmic reticulum Ca2+-dependent ATPase from temporalis muscle. Acta Odontol Latinoam 2010;23:92–98.

29. Gaffen AS, Haas DA. Survey of local anesthetic use by Ontario dentists. J Can Dent Assoc 2009;75:649.

30. Yapp KE, Hopcraft MS, Parashos P. Articaine: A review of the literature. Br Dent J 2011;210:323–329.

31. Kanaa MD, Whitworth JM, Corbett IP, Meechan JG. Articaine buccal infiltration enhances the effectiveness of lidocaine inferior alveolar nerve block. Int Endod J 2009;42:238–246.

32. Sánchez GA, Di Croce DE, Richard SB, Takara D. Effect of articaine on calcium transport in sarcoplasmic reticulum membranes isolated from medial pterygoid muscle. Acta Odontol Latinoam 2012;25:34–39.

33. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev 2011;91:1447–1531.

34. Fujiwara T, Kuroki K, Goto S. Difference in muscle fiber type of rabbit medial pterygoid muscle and masseter muscle. EJCO 2014;2:34–39.

35. Champeil P, Guillain F, Vénien C, Gingold MP. Interaction of magnesium and inorganic phosphate with calcium-deprived sarcoplasmic reticulum adenosinetriphosphatase as reflected by organic solvent induced perturbation. Biochemistry 1985;24:69–81.

36. Dormer RL, Capurro DE, Morris R, Webb R. Demonstration of two isoforms of the SERCA-2b type Ca2+,Mg(2+)-ATPase in pancreatic endoplasmic reticulum. Biochim Biophys Acta 1993;1152:225–230.

37. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–685.

38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193: 265–275.

39. Leberer E, Pette D. Immunochemical quantification of sarcoplasmic reticulum Ca-ATPase, of calsequestrin and of parvalbumin in rabbit skeletal muscles of defined fiber composition. Eur J Biochem 1986;156:489–496.

40. Baginski ES, Foà PP, Zak B. Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 1967;13:326–332.

41. Sánchez GA, Di Croce DE, de la Cal C, Richard SB, Takara

D. Differential mechanism of the effects of ester-type local anesthetics on sarcoplasmic reticulum Ca-ATPase. Naunyn Schmiedebergs Arch Pharmacol 2013;386:1061–1069.

42. Di Croce D, Trinks PW, Grifo MB, Takara D, Sánchez GA. Drug action of benzocaine on the sarcoplasmic reticulum Ca-ATPase from fast-twitch skeletal muscle. Naunyn Schmiedebergs Arch Pharmacol 2015;388:1163–1170.

43. Di Croce DE, Trinks PW, de La Cal C, Sánchez GA, Takara D. Amide-type local anesthetics action on the sarcoplasmic reticulum Ca-ATPase from fast-twitch skeletal muscle. Naunyn Schmiedebergs Arch Pharmacol 2014;387:873–881.

44. Nouette-Gaulain K, Dadure C, et al. Age-dependent bupivacaine-induced muscle toxicity during continuous peripheral nerve block in rats. Anesthesiology 2009;111:1120–1127.

45. Lei B, Popp S, Capuano-Waters C, Cottrell JE, Kass IS. Lidocaine attenuates apoptosis in the ischemic penumbra and reduces infarct size after transient focal cerebral ischemia in rats. Neuroscience 2004;125:691–701.

46. Epstein-Barash H, Shichor I, Kwon AH, et al. Prolonged duration local anesthesia with minimal toxicity. Proc Natl Acad Sci U S A 2009;106:7125–7130.

47. Sindrup SH, Jensen TS. Pharmacotherapy of trigeminal neuralgia. Clin J Pain 2002;18:22–27.

48. van der Linden CG, Simonides WS, Muller A, et al. Fiberspecific regulation of Ca(2+)-ATPase isoform expression by thyroid hormone in rat skeletal muscle. Am J Physiol 1996; 271:C1908–C1919.

49. Moshal KS, Zhang Z, Roder K, et al. Progesterone modulates SERCA2a expression and function in rabbit cardiomyocytes. Am J Physiol Cell Physiol 2014;307:C1050–C1057.

Abstracted / indexed in

Science Citation Index (SCI)

Science Citation Index Expanded (SCIE)

BIOSIS Previews

Scopus

Cumulative Index to Nursing and Allied Health Literature (CINAHL)

Submission Turnaround Time

Conferences

Top