Article Data

  • Views 380
  • Dowloads 44

Original Research

Open Access

Regional Collagen Fiber Network in the Articular Disc of the Human Temporomandibular Joint: Biochemical 3-Tesla Quantitative Magnetic Resonance Imaging Compared to Quantitative Histologic Analysis of Fiber Arrangement

  • Jaryna Eder1,*,
  • Zbynek Tonar2
  • Martina Schmid-Schwap1
  • Margit Bristela1
  • Astrid Skolka1
  • Hannes Traxler3
  • Eva Piehslinger1
  • Monika Egerbacher4
  • Siegfried Trattnig5,6,7
  • Kirsti Witter4

1Med Univ Vienna, Univ Clin Dent Vienna, Dept Prosthodont, Vienna, Austria

2Charles Univ Prague, Fac Med Pilsen, Biomed Ctr, Dept Histol & Embryol, Plzen, Czech Republic

3Med Univ Vienna, Dept Anat, Vienna, Austria

4Univ Vet Med Vienna, Dept Pathobiol, Inst Anat, Vienna, Austria

5Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, High Field MR Ctr, Vienna, Austria

6CD Lab Mol Clin MR Imaging, Vienna, Austria

7Ludwig Boltzmann Inst Expt Clin Traumatol, Austrian Cluster Tissue Regenerat, Vienna, Austria

DOI: 10.11607/ofph.1879 Vol.32,Issue 3,September 2018 pp.266-267

Published: 30 September 2018

*Corresponding Author(s): Jaryna Eder E-mail: jaryna.eder@meduniwien.ac.at

Abstract

Aims: To evaluate the regional collagen fiber network in the human temporomandibular joint (TMJ) disc by using biochemical magnetic resonance imaging (MRI) and quantitative histology. Methods: MRI of 5 heads (10 TMJ discs) obtained from partially dentate or edentulous cadavers was performed at 3-Tesla MRI by using a flexible, 8-channel transmit-receive coil. After MRI, all 10 discs were processed histologically. Percentages of coronal, sagittal, and transverse collagen fibers were assessed stereologically for the anterior, central, and posterior parts of the disc. An anisotropy index was calculated for collagen fiber arrangement in all three regions of interest. Results: In the central part of the TMJ disc, collagen fibers were arranged anisotropically with a preferentially sagittal direction. In the anterior and posterior parts, evidence for fibers being arranged isotropically (randomly) without preferred direction was found. Mean MRI T2 values appeared to be correlated with the anisotropy index of collagen fibers (r = –0.45; P < .05). When tested individually, T2 values of the isotropic anterior and posterior disc regions showed a partial but significant correlation with the anisotropy index of collagen fibers (r = –0.54; P < .05), whereas the anisotropic central part did not (P > .05). Conclusion: This study has provided the first systematic comparison of quantitative data on collagen fiber isotropy and anisotropy assessed in histologic sections with biochemical quantitative MRI for human TMJ fibrous cartilage.

Keywords

comparison of MRI and histology;fibrocartilage;MRI;temporomandibular joint;3 Tesla

Cite and Share

Jaryna Eder,Zbynek Tonar,Martina Schmid-Schwap,Margit Bristela,Astrid Skolka,Hannes Traxler,Eva Piehslinger,Monika Egerbacher,Siegfried Trattnig,Kirsti Witter. Regional Collagen Fiber Network in the Articular Disc of the Human Temporomandibular Joint: Biochemical 3-Tesla Quantitative Magnetic Resonance Imaging Compared to Quantitative Histologic Analysis of Fiber Arrangement. Journal of Oral & Facial Pain and Headache. 2018. 32(3);266-267.

References

1.Werner JA, Tillmann B, Schleicher A. Functional anatomy of the temporomandibular joint. A morphologic study on human autopsy material. Anat Embryol (Berl) 1991;183:89–95.

2.Minarelli AM, Del Santo Júnior M, Liberti EA. The structure of the human temporomandibular joint disc: A scanning electron microscopy study. J Orofac Pain 1997;11:95–100.

3.Mills DK, Fiandaca DJ, Scapino RP. Morphologic, microscopic, and immunohistochemical investigations into the function of the primate TMJ disc. J Orofac Pain 1994;8:136–154.

4.Scapino RP, Canham PB, Finlay HM, Mills DK. The behaviour of collagen fibres in stress relaxation and stress distribution in the jaw-joint disc of rabbits. Arch Oral Biol 1996;41:1039–1052.

5.Beatty MW, Bruno MJ, Iwasaki LR, Nickel JC. Strain rate de-pendent orthotropic properties of pristine and impulsively loaded porcine temporomandibular joint disk. J Biomed Mater Res 2001;57:25–34.

6.de Bont LG, Liem RS, Havinga P, Boering G. Fibrous com-ponent of the temporomandibular joint disk. Cranio 1985;3: 368–373.

7.Minarelli AM, Liberti EA. A microscopic survey of the human temporomandibular joint disc. J Oral Rehabil 1997;24:835–840.

8.Shengyi T, Xu Y. Biomechanical properties and collagen fiber orientation of TMJ discs in dogs: Part 1. Gross anatomy and collagen fiber orientation of the discs. J Craniomandib Disord 1991;5:28–34.

9.Katzberg RW, Tallents RH. Normal and abnormal temporo-mandibular joint disc and posterior attachment as depicted by magnetic resonance imaging in symptomatic and asymptomat-ic subjects. J Oral Maxillofac Surg 2005;63:1155–1161.

10.Hansson LG, Westesson PL, Katzberg RW, et al. MR imaging of the temporomandibular joint: Comparison of images of au-topsy specimens made at 0.3 T and 1.5 T with anatomic cryo-sections. AJR Am J Roentgenol 1989;152:1241–1244.

11.Allen KD, Athanasiou KA. Tissue engineering of the TMJ disc: A review. Tissue Eng 2006;12:1183–1196.

12.Scapino RP, Obrez A, Greising D. Organization and func-tion of the collagen fiber system in the human temporoman-dibular joint disk and its attachments. Cells Tissues Organs 2006;182:201–225.

13.Jackson A, Gu W. Transport properties of cartilaginous tis-sues. Curr Rheumatol Rev 2009;5:40.

14.Murphy MK, Arzi B, Hu JC, Athanasiou KA. Tensile character-ization of porcine temporomandibular joint disc attachments. J Dent Res 2013;92:753–758.

15.Hansson T, Nilner M. A study of the occurrence of symptoms of disease of the temporomandibular joint masticatory muscu-lature and related structures. J Oral Rehabil 1975;2:313–324.

16.Dworkin SF, Huggins KH, LeResche L, et al. Epidemiology of signs and symptoms in temporomandibular disorders: Clinical signs in cases and controls. J Am Dent Assoc 1990;120:273–281.

17.Reston JT, Turkelson CM. Meta-analysis of surgical treatments for temporomandibular articular disorders: A reply to the dis-cussants. J Oral Maxillofac Surg 2003;61:737–738.

18.Almarza AJ, Athanasiou KA. Evaluation of three growth factors in combinations of two for temporomandibular joint disc tissue engineering. Arch Oral Biol 2006;51:215–221.

19.Stegenga B. Osteoarthritis of the temporomandibular joint or-gan and its relationship to disc displacement. J Orofac Pain 2001;15:193–205.

20.Trattnig S, Mlynárik V, Huber M, Ba-Ssalamah A, Puig S, Imhof H. Magnetic resonance imaging of articular cartilage and eval-uation of cartilage disease. Invest Radiol 2000;35:595–601.

21.Stehling C, Vieth V, Bachmann R, et al. High-resolution mag-netic resonance imaging of the temporomandibular joint: Image quality at 1.5 and 3.0 Tesla in volunteers. Invest Radiol 2007; 42:428–434.

22.Marik W, Apprich S, Welsch GH, Mamisch TC, Trattnig S. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2-mapping at 3T MRI: A feasibility study. Eur J Radiol 2012; 81:923–927.

23.Quirbach S, Trattnig S, Marlovits S, et al. Initial results of in vivo high-resolution morphological and biochemical cartilage imaging of patients after matrix-associated autologous chon-drocyte transplantation (MACT) of the ankle. Skeletal Radiol 2009;38:751–760.

24.Schmid-Schwap M, Drahanowsky W, Bristela M, Kundi M, Piehslinger E, Robinson S. Diagnosis of temporomandibular dysfunction syndrome—Image quality at 1.5 and 3.0 Tesla magnetic resonance imaging. Eur Radiol 2009;19:1239–1245.

25.Schmid-Schwap M, Bristela M, Pittschieler E, et al. Biochemical analysis of the articular disc of the temporoman-dibular joint with magnetic resonance T2 mapping: A feasibility study. Clin Oral Investig 2014;18:1865–1871.

26.Goodwin DW, Wadghiri YZ, Zhu H, Vinton CJ, Smith ED, Dunn JF. Macroscopic structure of articular cartilage of the tibial pla-teau: Influence of a characteristic matrix architecture on MRI appearance. AJR Am J Roentgenol 2004;182:311–318.

27.Williams A, Gillis A, McKenzie C, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolini-um-enhanced MRI of cartilage (dGEMRIC): Potential clinical applications. AJR Am J Roentgenol 2004;182:167–172.

28.Trattnig S, Millington SA, Szomolanyi P, Marlovits S. MR im-aging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 2007;17:103–118.

29.Miller KL, Hargreaves BA, Gold GE, Pauly JM. Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med 2004;51:394–398.

30.Welsch GH, Mamisch TC, Hughes T, Domayer S, Marlovits S, Trattnig S. Advanced morphological and biochemical magnetic resonance imaging of cartilage repair procedures in the knee joint at 3 Tesla. Semin Musculoskelet Radiol 2008;12:196–211.

31.Welsch GH, Mamisch TC, Hughes T, et al. In vivo biochemical 7.0 Tesla magnetic resonance: Preliminary results of dGEM-RIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol 2008;43:619–626.

32.Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: Overview and applications. Semin Musculoskelet Radiol 2004;8:355–368.

33.Trattnig S, Domayer S, Welsch GW, Mosher T, Eckstein F. MR imaging of cartilage and its repair in the knee—A review. Eur Radiol 2009;19:1582–1594.

34.Romeis B, Böck P. Mikroskopische Technik. Munich: Urban & Schwarzenberg, 1989.

35.Howard CV, Reid MG (eds). Estimation of component volume and volume fraction. In: Unbiased Stereology: Three-Dimensional Measurement in Microscopy. Oxford: BIOS Scientific, 1998: 55–68.

36.Gundersen HJ, Jensen EB. The efficiency of systematic sam-pling in stereology and its prediction. J Microsc 1987;147: 229–263.

37.Kochová P, Cimrman R, Janácˇek J, Witter K, Tonar Z. How to assess, visualize and compare the anisotropy of linear struc-tures reconstructed from optical sections—A study based on histopathological quantification of human brain microvessels. J Theor Biol 2011;286:67–78.

38.Dryden IL, Koloydenko A, Zhou D. Non-euclidean statistics for covariance matrices, with applications to diffusion tensor im-aging. Ann Appl Stat 2009;3:1102–1123.

39.Arsigny V, Fillard P, Pennec X, Ayache N. Geometric means in a novel vector space structure on symmetric positive-definite matrices. Siam J Matrix Anal Appl 2006;29:328–347.

40.Gründer W, Wagner M, Werner A. MR-microscopic visualiza-tion of anisotropic internal cartilage structures using the magic angle technique. Magn Reson Med 1998;39:376–382.

41.Nieminen MT, Rieppo J, Töyräs J, et al. T2 relaxation reveals spatial collagen architecture in articular cartilage: A compar-ative quantitative MRI and polarized light microscopic study. Magn Reson Med 2001;46:487–493.

42.Rubenstein JD, Kim JK, Morova-Protzner I, Stanchev PL, Henkelman RM. Effects of collagen orientation on MR imag-ing characteristics of bovine articular cartilage. Radiology 1993;188:219–226.

43.Fragonas E, Mlynárik V, Jellús V, et al. Correlation between bio-chemical composition and magnetic resonance appearance of articular cartilage. Osteoarthritis Cartilage 1998;6:24–32.

44.Xia Y. Heterogeneity of cartilage laminae in MR imaging. J Magn Reson Imaging 2000;11:686–693.

45.Kalpakci KN, Willard VP, Wong ME, Athanasiou KA. An in-terspecies comparison of the temporomandibular joint disc. J Dent Res 2011;90:193–198.

Abstracted / indexed in

Science Citation Index (SCI)

Science Citation Index Expanded (SCIE)

BIOSIS Previews

Scopus

Cumulative Index to Nursing and Allied Health Literature (CINAHL)

Submission Turnaround Time

Conferences

Top